
WHITE PAPER: DEVOPS TOOLCHAIN

DEVOPS TOOLCHAINS AND CONTINUOUS DELIVERY

Software plays a central role in the performance of your

business. Great mobile and web apps win you customers

and keep them loyal. Well-crafted dashboards and BI tools

dramatically improve the decisions your people make every

day. Software streamlines your supply chain and mitigates

your compliance risks. In fact, your business can do just

about everything better if it does it with better software.

But the bar for digital excellence keeps rising as customer

expectations and market demands continue to escalate.

So digital excellence is something you have to relentlessly

strive to sustain.

The best companies sustain their digital excellence through

a combination of Agile culture, DevOps best practices and

smart hiring/coaching of developer talent. And what they

achieve to one degree or another is Continuous Delivery—

increasingly frequent drops of code that work as required

in production and tangibly improve business performance.

These rapid release cycles accelerate the critical learning

enterprises must do to quickly discover ideas that matter

to the customer—and just as quickly turn them into living

digital value.

Continuous Delivery is facilitated by DevOps toolchains.

These toolchains link developers, test/QA teams and operations

sta� s as they perform software lifecycle tasks such as

requirements management, coding, regression testing,

release packaging and deployment. They include DevOps

solutions associated with familiar names such as Atlassian,

Chef, Docker, Slack, SonarSource, Splunk and XebiaLabs.

DevOps toolchains can be evaluated by fi ve criteria:

 ✔ Functional richness. Each tool in a toolchain has its own

capabilities. Those capabilities include automation that

accelerates manual processes and enforces process rules,

visualizations that make it easy for DevOps sta� to fi nd and

fi x problems, and management features that enable process

governance. The richer those automation, visualization and

management capabilities, the better the overall toolchain.

Your success increasingly depends on
relentless improvement of your company’s
digital capabilities—which, in turn, depends
on consistently getting great code into
production ASAP.

To do this, companies are building DevOps
toolchains that use automation to facilitate
speed, quality, productivity and good governance
across a Continuous Delivery lifecycle.

It is imperative for larger enterprises to include
the mainframe in these toolchains, since
mainframe applications and data are among
their most strategic digital assets.

The optimal architecture for mainframe-
inclusiveness harmonizes mainframe platform/
task specifi city with good integration into the
broader DevOps toolchain environment.

Inclusive toolchains deliver major competitive
advantage by enabling much more frequent
drops of quality mainframe code, while
making the platform much more accessible
to DevOps teams.

Mainframe-inclusive DevOps Toolchains
ACHIEVING CONTINUOUS DELIVERY IN LARGE MULTI-PLATFORM ENTERPRISES

DEVOPS BENEFITS

• 57% increased customer conversion or satisfaction

• 57% reduced IT infrastructure spend

• 49% reduction in application downtime or failure rates

• 46% increase in customer engagement

• 46% increase in sales

• 32% increase in employee engagement

Source: Vanson Bourne on behalf of Rackspace

WHITE PAPER: DEVOPS TOOLCHAIN

2

 ✔ Completeness. The theory of constraints suggests that

a DevOps toolchain is only as useful as its weakest link.

Any gap in toolchain coverage—whether that coverage

gap is of a task or a platform—is thus an absolute constraint

on the end-to-end Continuous Delivery process.

 ✔ Integration. Toolchains don’t just facilitate Continuous

Delivery by supporting each step in the process. They also

facilitate it by e� ectively linking those steps together. In fact,

those inter-step hando� s can be particularly susceptible to

ine� ciencies and errors. So tool-to-tool integration is a

critical factor in toolchain value.

 ✔ Ease of use. DevOps tools aren’t of much value if it takes

too much time and e� ort to learn how to use all their

features—especially since DevOps sta� s often have to

quickly become competent on multiple tools. Ease of use

is therefore another factor in toolchain e� ectiveness.

 ✔ Adaptability. DevOps teams have to work on di� erent types

of projects involving di� erent types of data, codebases and

platforms—each of which is constantly undergoing its own

independent evolution. A good toolchain must therefore be

capable of adapting to changes in technology, in

application architectures and in collaboration partners.

By building and refi ning toolchains that meet these criteria,
companies can deliver more code that more precisely
fulfi lls the needs of the business with fewer defects at a
faster cadence and at lower cost with greater reliability.

A well-engineered DevOps toolchain is thus not merely a
matter of IT convenience or geek pride. It is a fundamental
necessity for any company hoping to successfully compete
in an increasingly digital-centric marketplace.

THE MAINFRAME’S SPECIAL ROLE

DevOps and Continuous Delivery best practices have primarily
been applied to distributed, web, mobile and cloud platforms.
At large enterprises, however, the mainframe is also an
extremely important platform. In fact, most development at
large enterprises—including development of mobile, web and
cloud services—depends on the mainframe as a back-end server.

There are two primary reasons for this:

• Core applications. Mainframe applications are typically a large

enterprise’s most crucial and highly evolved systems. Their

business logic has been rigorously honed and refi ned over

multiple decades to fulfi ll the complex requirements of core

business processes and mission-critical transaction processing.

So any application that extends a core process or enables

execution of a transaction must interface with mainframe code.

• Core databases. Mainframes typically host a large enterprise’s

most complete and up-to-date information. The associated

mainframe databases have also been rigorously honed and

refi ned over multiple decades to fulfi ll the complex

requirements of the business. Their extended evolution can

be particularly important in fi nancial services, insurance, retail,

government and other categories where customer relationships

and compliance requirements extend over multiple decades.

In addition to hosting the enterprise’s core applications
and core databases, the mainframe itself is inherently
appealing because of its reliability, security, scalability
and performance economics. These attributes make it
a compelling platform for computing workloads that are
mission-critical, require high transaction rates, are
especially response-time sensitive, and/or are subject
to unexpected demand spikes. The mainframe is also the
preferred platform for working with massive mainframe
datasets—since it makes sense to operate on those datasets
where they are, rather than fi rst performing unacceptably
slow and expensive dataset extract, transform and load
(ETL) operations to work with the data elsewhere.

Despite the crucial importance of mainframe applications and
data, however, the mainframe has almost universally been
excluded from DevOps/Continuous Delivery toolchains. This
exclusion has severely hampered enterprise agility—especially
when IT organizations have found themselves limited to just a
small handful of mainframe code drops annually.

There are three main reasons that the mainframe has
historically been excluded from the DevOps mainstream:

1. Lack of appropriate tools. Most mainframe tools
vendors have remained stuck in a very outdated
and siloed view of the platform—and have therefore
failed to develop and deliver tools that support
contemporary concepts such as Agile and DevOps.
Nor have they provided large enterprises with
mainframe tools that fi t well into multi-platform,
multi-vendor preferred DevOps toolchains.

2. The myth of inherent platform non-agility. Because large
enterprises haven’t done Agile on the mainframe, it’s
easy to lapse into the misconception that they can’t.

WHITE PAPER: DEVOPS TOOLCHAIN

3

This is false. Code is code. There’s nothing about
IBM z/OS—or COBOL or PL/I or Assembler for that
matter—that makes it inherently impossible to more
quickly execute smaller, more frequent drops of code
that align tightly with new business requirements. In
fact, it can and is being done today.

3. Cultural/generational issues. Agile, DevOps and
Continuous Delivery are as much about culture
as they are about enabling technologies. Mainframe
development teams have typically worked under a
waterfall model with extremely infrequent (by today’s
standards) releases for decades. Changing these
personal work habits and culture isn’t easy. Developers
working on other platforms, on the other hand, tend
to be “native Agile.”

Large enterprises cannot

be truly digitally agile if

their mainframes are not agile.

The continued exclusion of mainframe applications and data
from the enterprise DevOps toolchain, however, is no longer
necessary or desirable. Large enterprises cannot be truly
digitally agile if their mainframes are not agile. And this failure
to become fully agile will ultimately cause any large enterprise
to fail—regardless of how invulnerable it may seem to those in
denial about the realities of competition in digital markets.

Large enterprises that want to successfully compete in
digital markets must therefore craft DevOps toolchains
that are mainframe-inclusive.

CRAFTING YOUR MAINFRAME-INCLUSIVE TOOLCHAIN

Enterprise DevOps teams can include the mainframe in
their toolchains—and, by extension, into their end-to-end
Continuous Delivery processes—using two complementary
types of tools: cross-platform and mainframe specifi c.

1. Cross-platform tools that support the mainframe

DevOps teams can benefi t from tools that support

multiple platforms, including the mainframe. Two areas

where cross-platform tools can be particularly useful are:

Release Automation. In many cases, updates to
enterprise applications require code to be promoted
across several platforms simultaneously. This type of
coordinated cross-platform workfl ow is often best
executed using a tool that can orchestrate tasks across
multiple platforms—including the mainframe,
distributed systems and the cloud. A cross-platform
tool also o� ers DevOps managers advantages when it
comes to reporting and troubleshooting.

Quality Management. It’s also useful for DevOps
managers to use cross-platform tools for quality
management requirements such as reporting and
dashboards. Again, this allows managers to browse all
data and metrics from all platforms relevant to any
given release or application in a single place.

Cross-platform tools may, of course, piggyback on
platform-specifi c tools. And it may sometimes be
necessary for platform specialists to “drill down”
to platform-specifi c tools as part of a fi nd-and-fi x
process. But higher-level cross-platform tools are very
useful on a day-to-day basis.

2. Mainframe-specifi c tools that integrate into the
DevOps toolchain
For other steps in the end-to-end DevOps lifecycle,
mainframe-specifi c tools are more appropriate. That’s
because it is typically counterproductive to move
thousands of mainframe application source code
modules—or large volumes of mainframe test data—
back and forth between platforms over the network.
It is also essential to test application components in
their target runtime environment, in order to ensure
production readiness—especially given the prohibitive
cost and time required to set up a simulated mainframe
environment. Native mainframe environments also
greatly simplify and streamline disaster recovery and
DR testing for mission-critical applications and data.

Mainframe SCM tools that

“hold code hostage” are unacceptable

in today’s Agile workplace.

WHITE PAPER: DEVOPS TOOLCHAIN

4

Three areas where mainframe-specifi c tools work best are:

Source code management (SCM). As noted above, it’s not
economically or operationally practical to shuttle massive
amounts of code between platforms. Also the speed
of recovery required for mission-critical mainframe
applications is best achieved by keeping source code
on the mainframe. This way, that source code is subject to
the same disaster recovery procedures as
all other mainframe objects—and appropriate version
control/linkage is maintained between mainframe
production source and production objects.

Mainframe application environments are also characterized by
highly complex (and often poorly documented)
dependencies between application modules. Platform-
specifi c intelligence is extremely useful for accurately
navigating these dependencies to ensure code quality and

developer productivity.

That said, DevOps teams need to exercise caution when
selecting a mainframe SCM tool for their toolchain. Many
traditional mainframe SCM tools require laborious coding
for each reconfi guration or upgrade. That’s unacceptable
given the pressure on DevOps teams to be adaptable and
e� cient. Most mainframe SCM tools also require coding for
build automation. This coding adds cost and slows
development. A template-based approach that enables
DevOps teams to quickly and easily defi ne and modify

processes is a much better fi t with mainstream DevOps.

Also critical is the ability of developers to work in parallel.
Traditional mainframe SCM tools that “hold code hostage”
because someone checked it out—or, worse yet, forgot
to check it back in—are unacceptable in today’s Agile
workplace (see chart).

Traditional
Mainframe SCM

SCM Capability DevOps-enabled
Mainframe SCM

Distributed
SCM

Allows developers to work in parallel

Customizable build processes

Visualization of code promotion

Integration with deployment tools

Mobile-enabled approvals

Early code collision detection

Code promotion workflow for
development, test and production

requires custom coding template-enabled

limited

limited

Choosing the Right Mainframe-specifi c SCM Tool for Your Cross-platform DevOps Toolchain

This chart contrasts traditional siloed mainframe SCM tools with more innovative mainframe-specifi c SCM solutions
that work well in the context of today’s DevOps toolchains. Git is included for comparison purposes.

WHITE PAPER: DEVOPS TOOLCHAIN

5

Build automation. The creation of production-ready
z/OS application executables from mainframe source
code is highly platform specifi c. Compile, bind and
packaging operations must be precisely performed to
ensure that code performs properly. Above and beyond
the platform’s precise (and often unforgiving) technical
requirements, builds for mainframe applications that have
evolved over the span of multiple decades may entail
management of thousands of interrelated components
with tens of millions of lines of code. That combination of
scale, complexity and precision demands a specialized tool.

Ease of automation is particularly important when it
comes to mainframe builds. If it takes too much time,
e� ort and expertise to put builds together, the end-to-
end software delivery process will always be delayed by
compile, bind and packaging tasks. The process will also
be highly vulnerable to errors that require full stop,
potentially extended troubleshooting and re-start. The
mainframe build automation tool in any enterprise
DevOps toolchain will therefore ideally facilitate
automation with some kind of confi gurable, template-
based build prep capability with built-in platform
intelligence—rather than requiring extensive custom
coding by increasingly scarce mainframe SMEs.

Deployment automation. Tools that automate and
manage deployment of mainframe applications in
enterprise DevOps should also be platform-specifi c.
Enterprise mainframe environments typically include
thousands of software components with complex,
hard-coded interdependencies. Various versions of these
components may be spread across development, test
and production areas. The right deployment tool ensures
that all of these components are fully and accurately
prepared to run in their target environments. It will also
monitor those components throughout the deployment
process to provide clear, ongoing visibility into that
process—as well as fallback and re-start capabilities
that the DevOps team can use if it encounters any
issues mid-process.

In the case of mainframe SCM, DevOps teams must
typically replace an existing, outdated tool that is
inherently engineered for waterfall development with
a new tool designed for DevOps workfl ow. In the case
of mainframe deployment, DevOps teams are typically
replacing existing homegrown scripts. Mainframe teams

have often written many such scripts over the years. But
an ad hoc collection of individual task scripts can’t support
Continuous Delivery. They don’t provide complete coverage
of all software components across all tasks at all times.
They don’t interface well with other tools in the toolchain.
And they constantly have to be re-written, which slows
DevOps considerably—and can be a real problem if the
original script writer isn’t around anymore.

Mainframe DevOps tools

should be as intuitive and

 graphical as non-mainframe tools.

Cross-platform DevOps toolchains work best when their
mainframe tools provide interfaces that are as intuitive and
graphical as those of non-mainframe tools. Ideally,
mainframe DevOps tools should also o� er built-in platform
intelligence that makes it easier for IT sta� without much
hands-on mainframe experience to successfully perform
common mainframe-related tasks.

Because DevOps toolchains engage both development
and operations sta� , mainframe tools in those toolchains
should meet the needs of each. In the case of operations
teams, that typically means providing secure web interfaces
that allow them to quickly complete tasks from anywhere,
any time. In the case of developers, that can often mean
providing a plugin to an Eclipse-based IDE.

Mainframe SCM and deployment automation tools should
also be tightly integrated with each other. This integration
further streamlines DevOps processes and better enables
IT to execute more mainframe code drops more often.

Of course, DevOps toolchains include other functions
as well—including unit testing and the monitoring of
application behaviors in production (see graphic). The
functions discussed above simply serve as primary
examples of how DevOps toolchains can be best
expanded to include the mainframe’s essential
application and database resources.

WHITE PAPER: DEVOPS TOOLCHAIN

6

WHITE PAPER: WHITE PAPER: WHITE PAPER: WHITE PAPER: DEVOPS TOOLCHAINDEVOPS TOOLCHAINDEVOPS TOOLCHAINDEVOPS TOOLCHAINDEVOPS TOOLCHAINDEVOPS TOOLCHAINDEVOPS TOOLCHAINDEVOPS TOOLCHAINWHITE PAPER: DEVOPS TOOLCHAIN

IS IT URGENT?

Mainframe developers and operations sta� s have done
things the same way for decades. And DevOps teams
focused on the distributed/cloud environment have been
content to ignore the mainframe. So it is natural to ask if
there is any truly urgent reason for enterprises to now bring
both groups together via a common mainframe-inclusive
DevOps toolchain.

The answer is most certainly a resounding “Yes!” Large
enterprises must move quickly to build mainframe-inclusive
DevOps toolchains because:

The ability of large enterprises to compete in
digital-centric markets fundamentally depends
on mainframe-inclusive agility. In market after market,
large enterprises are seeing their marketshare and brand
power being eroded by smaller, more digitally nimble
market entrants. These new competitors almost universally

have “green-fi eld” IT that is cloud-based and native Agile.
Large enterprises cannot compete with these companies if
they can only manage a few code drops a year on their core
mainframe systems. They must optimize agility across all
platforms—the mainframe chief among them.

The mainframe cannot be wished away. Empirical studies
make it clear that the mainframe will remain the platform-
of-choice for core systems of record at large enterprises for
the next ten years or more. So it doesn’t make strategic
sense to just hope that mainframe applications and data will
somehow be magically re-platformed in the next 18 months.
Nor does it make sense to adopt a strategy, as some have
misguidedly suggested, of relegating the mainframe to
some kind of “maintenance mode” while other platforms
move towards Continuous Delivery. No business can be
agile if its core systems are not agile. So large enterprises
must invest in mainframe agility now.

Distributed/Cloud DevOps

Mainframe DevOps

The best cross-platform toolchains leverage both platform-specific and cross-platform

tools to include the mainframe in enterprise Agile/DevOps processes.

ANALYZE DEVELOP BUILD TEST

ANALYZE DEVELOP BUILD TEST

PLAN RELEASE MONITOR

Distributed/Cloud Environment

Traditional Mainframe Development

?
Large enterprises that don’t include the mainframe in their DevOps toolchains will

continue to be plagued by slow, infrequent delivery of critical mainframe code updates.

SI
LO

E
D

U
N

IF
IE

D

PLAN ANALYZE DEVELOP BUILD TEST RELEASE MONITOR

SLOW, INFREQUENT WATERFALL-BASED CODE DROPS

The Mainframe Software Partner For The Next 50 Years

Compuware empowers the world’s largest companies to excel in the digital economy by fully leveraging their high-value mainframe investments. We do this

by delivering highly innovative solutions that uniquely enable IT professionals with mainstream skills to manage mainframe applications, data and platform operations.

Learn more at Compuware.com.

© 2016 Compuware Corporation. Compuware products and services listed within are trademarks or registered trademarks of Compuware Corporation.

06.16_31452_Compuware_Toolchain_wp

WHITE PAPER: DEVOPS TOOLCHAIN

Mainframe demographics are inexorably shifting. The
relentless march of time is forcing IT organizations to
confront the impending retirement of their most senior and
experienced mainframe SMEs. This mainframe “brain drain”
cannot be remedied by simply outsourcing development—
for the same reasons that Facebook and Google don’t
outsource their newsfeed or search algorithms. Continued
aggressive evolution of mainframe code is essential to an
enterprise’s competitiveness in digital markets, so internal
mainframe mastery and vision remains essential. Enterprise
IT leaders playing to win in the digital economy must therefore
accomplish two objectives—and accomplish them quickly:

1. They must empower a declining number of senior
mainframe SMEs to become vastly more productive.

2. They must empower their growing next-generation
DevOps SMEs to master mainframe tasks.

These two objectives can best be accomplished by better
automating mainframe development and operations tasks
within the context of cross-platform enterprise toolchains.

The bottom line: Large enterprises that invest
in mainframe re-tooling and DevOps toolchain
integration will:

• More successfully compete in today’s fast-moving,

customer-centric digital marketplace

• Drive down mainframe development and operations costs

• Better navigate the unavoidable generational shift in

mainframe sta� ng

• Improve collaboration across IT disciplines

• Avoid operational and regulatory risks associated with

mainframe errors

• Dramatically increase the value returned by their massive

mainframe investments

For these reasons and others, mainframe-inclusive DevOps
toolchains are a must-have for every large enterprise.

A GROWING CONSENSUS

The inclusion of the mainframe in DevOps toolchains
is strongly endorsed by independent market
observers. In a recent research note entitled “Digital
Transformation Needs Mainframe DevOps,” Forrester
Research asserted that:

• Mainframe applications benefi t from DevOps

practices that boost speed and lower risk

• Years of neglect mean the barriers may be higher,

but they are not insurmountable

• Improving mainframe application delivery speed

is a survive-and-thrive imperative

And in a recent InformationWeek article entitled,
“How Bimodal IT Can Kill Your Company,” Forrester
Research VP and Senior Analyst John C. McCarthy
stated that:

“… bimodal continues the cozy complacency
between CIOs who don’t want to transform and
vendors who don’t want to change. I don’t think
the strategy is going to work for a lot of these
companies and a lot of these vendors.”

A recent McKinsey research note entitled
“An Operating Model for Company-wide Agile
Development” further asserted that enterprises
deploying Agile at scale accelerate their innovation
by up to 80%.

“Successful digital businesses unleash the

data and business processes encoded in

their mainframe-based applications.”

- “Digital Transformation Needs Mainframe DevOps,”
by Kurt Bittner and Rob Stroud

Forrester Research, Inc., June 20, 2016

http://reprints.forrester.com/#/assets/2/264/'RES134941'/reports
http://reprints.forrester.com/#/assets/2/264/'RES134941'/reports
http://reprints.forrester.com/#/assets/2/264/'RES134941'/reports
http://www.informationweek.com/strategic-cio/digital-business/how-bimodal-it-can-kill-your-company/a/d-id/1325457
http://www.mckinsey.com/Business-Functions/Business-Technology/Our-Insights/An-operating-model-for-company-wide-agile-development?cid=other-eml-alt-mip-mck-oth-1605
http://www.mckinsey.com/Business-Functions/Business-Technology/Our-Insights/An-operating-model-for-company-wide-agile-development?cid=other-eml-alt-mip-mck-oth-1605
www.compuware.com

